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In the shaft-loaded blister test (SLBT), plastic deformation often occurs at the con-
tact area between the shaft tip and adhesive layer, leading to a larger displacement
(blister height) than if the film was loaded elastically. As a consequence, incorpor-
ating the displacement variable into the analysis can result in misleading values
of the applied strain energy-release rate, G. In this work, the influence of plastic
yielding at the contact area on G of a thin film was investigated as a function of
some common SLBT experimental variables, namely, substrate hole diameter, film
thickness, and shaft-tip diameter. Test specimens consisted of plies of pressure-
sensitive adhesive tape adhered to a rigid glass substrate. G was calculated from
the following equations: (1) load-based, (2) hybrid, (3) displacement-based, and
(4) combination. Decreasing the film thickness, increasing the hole diameter, or
decreasing the shaft-tip diameter lead to more plastic yielding at the contact area
as well as to an increase in blister height. The increased blister height resulting
from plastic deformation leads to disagreement among the values of G calculated
from the different equations when the displacement variable was included in the
calculation. However, the load-based equation, which does not include the dis-
placement, was determined to be independent of plastic yielding and the ‘‘correct’’
equation for calculating G. In addition, the film tensile rigidity (Eh) was calcu-
lated using an experimental compliance calibration. The effects of film thickness
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on the mechanical behavior of the film (bending plate vs. stretching membrane) as
well as methods to determine the displacement resulting from plastic deformation
are also discussed.

Keywords: Pressure sensitive adhesive tapes; Coatings; Fracture; Yielding; Thin film;
Membrane; Bending plate; Bulge test; Point load; Sphere; Contact radius

INTRODUCTION

Plastic deformation complicates testing adhesive joints and coatings
by invalidating the assumptions of linear elasticity, consuming
energy which is difficult to account for, and causing inelastic strains
that can lead to adhesive rupture. Coatings are particularly suscep-
tible to plastic deformation or yielding because of the large stresses
generated in the film during testing, which is a consequence of the
small cross-sectional area (thinness) and strong adhesion [1].
Recently, the shaft-loaded blister test (SLBT) has been developed to
measure the adhesion [2–9] as well as the mechanical properties of
thin films and coatings [2, 6, 10–15]. In this experiment, a spherically
capped shaft applies a central load to a film, which results in a
deflection and delamination (Figure 1). These blister-test geometry
experiments and analysis have also recently been adopted for mea-
suring the mechanical response of films using a flat punch in a
variety of applications [13,16–21]. The strain energy-release rate, G,

FIGURE 1 Schematic of the shaft-loaded blister test. P is the load, w is the
displacement or blister height, a is the blister radius, R is the radius of the
shaft tip, and h is the half angle subtended from the shaft tip.
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can be calculated from the following expressions, which were derived
using linear elasticity [6]:

G ¼ 1

16p4Eh

� �1=3 P

a

� �4=3
load-based equation, ð1Þ

G ¼ 1

p2Eh
P

w

� �2
hybrid equation, ð2Þ

and

G ¼ Eh

16

w

a

� �4
displacement-based equation, ð3Þ

where P is the applied load, a is the debond radius, w is the displace-
ment or blister height, E is Young’s modulus of the adhesive film,
and h is the film thickness. The value of G calculated from Equation
(1) depends strongly on the load, and the value of G calculated from
Equation (3) depends strongly on the displacement. Equation 2 is a
combination of Equations (1) and (3). Therefore Equations (1), (2),
and (3) are referred to as the load-based, hybrid, and displacement-
based equations, respectively. Combining any two of Equations (1),
(2), or (3) reveals a fourth equation, denoted as the combination equa-
tion, which is identical to that derived by Williams [22] and Jensen
[23] and does not incorporate the stiffness (Eh) of the film:

G ¼ 1

4p
Pw

a2
combination equation. ð4Þ

The linear elastic equations for a stretching membrane predict the
following constitutive relation [6, 10]:

Pa2 ¼ pEh
4

� �
w3 ð5Þ

where, collectively, Eh is known as the film’s tensile rigidity, which
defines the film’s stiffness. The value of Eh of the adhesive layer
can be calculated from a compliance calibration where a graph of
pa2 as a function of w3 yields a slope equal to ðpEhÞ=4.

Previous work on the SLBT has shown that significant plastic defor-
mation inevitably occurs at the contact area between the shaft tip and
the adhesive film (Figure 2) [2, 6, 9, 10]. As a consequence, the blister
height or displacement is overestimated (relative to the elastic model),
leading to disagreement among the values of G if the displacement value
is incorporated into the calculation [Equations (2), (3), and (4)]. Wan and
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Mai derived expressions to calculate G that account for plastic defor-
mation at the contact area [6]. However, this increased complexity was
found to be unnecessary if Gwas calculated from the load-based equation,
which does not incorporate the displacement value and is believed to be
independent of plastic deformation at the contact area [2]. For clarity and
convenience, we discuss why the load-based equation is believed to be
independent of plastic deformation.More details can be found in thework
by O’Brien et al. [2]. In that work, G was measured for stacked layers of
pressure-sensitive adhesive tape (PSAT) adhered to aluminum. It was
argued that if plastic deformation is confined to the area of the shaft
tip, and linear elasticity is valid at the crack front (i.e., the yield stress
in the peel arm was not exceeded), then it can be assumed that the load
and blister radius are in equilibrium. As a consequence, the assumption
of linear elasticity and the application of the load-based equation are
valid. Therefore, the value of G calculated from the load-based equation
is ‘‘correct’’ despite the presence of plastic deformation at the contact
area. The arguments are supported by consistency of the values of G cal-
culated from the load-based equation for the different stacked layers of
PSAT. The work presented in this article further supports the argument.

As just mentioned, if the stress at the crack front is greater than the
yield stress of the film or if the size of the plastic zone at the crack tip is
greater than or equal to the film thickness, the linear elastic expressions
for G are inapplicable. Equation (6) can be used to calculate the effective
membrane stress (for a point load configuration) and can, therefore, be
used to determine if elasticity at the crack front is a good assumption [6]:

Neff ¼ ðGEhÞ1=2 ½ðloga=rÞ2 þ 3=4�1=2; ð6Þ

where r is the radial distance from the center of the blister. If the stress
exceeds the product of the yield stress, ry, and the film thickness, h, then

FIGURE 2 Schematic of the area of plastic deformation at the contact area
between the shaft tip and the film. The d symbol is the penetration of the
sphere into the film or displacement resulting from plastic deformation.
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yielding can occur ðNMax � ryhÞ. Additional, butmore complex, equations
for the membrane stress can be found in the work of Wan and Liao [10].

The shaft-tip diameter defines the contact area and, thus, the stress
in the film. Wan and Liao found that the maximum membrane stress,
NMax, can be expressed as [10]:

NMax ¼
P

2pR sin2 h
; ð7Þ

whereR is the radius of the shaft tip and h is the half angle that extends
from the contact area to the center of the shaft tip (Figure 1). As a
result, a smaller shaft-tip diameter or a thinner film is expected to
result in more plastic deformation and to overestimate displacement.

In this work, the influence of plastic deformation at the contact area
on the SLBT is explored by varying the substrate hole diameter, film
thickness, and shaft-tip diameter. The substrate hole diameter is a
test parameter chosen by the experimenter and deserves exploration,
despite the fact that for linear elastic conditions the size of the initial
debond should not matter. More specifically, the applied load, P,
debond radius, a, and displacement or blister height, w, are measured
and used to calculate G using four equations: (1) load-based, (2) hybrid,
(3) displacement-based, and (4) combination. With the sole exception
of the load-based equation, each equation incorporates the displace-
ment value and is sensitive to the treatment of plastic deformation.
In addition, the film tensile rigidity (Eh) was calculated using an
experimental compliance calibration. The effects of film thickness on
the mechanical behavior of the film (bending plate vs. stretching mem-
brane) as well as methods to determine the displacement resulting
from plastic deformation are also discussed. Test specimens consisted
of PSAT, up to three layers thick, adhered to a rigid glass surface.

EXPERIMENTALz

The adhesive tested in this work was Kapton PSAT, consisting of a
silicone-based thermosetting adhesive of thickness 38.1mm (1.5mil),
covered by a Kapton backing of thickness 25.4mm (1mil). The soda lime
glass substrate was 9.6mm thick and was cleaned with acetone prior to

zCertain commercial equipment and materials are identified in this paper to
adequately specify the experimental procedure. In no case does such identification imply
recommendations by the National Institute of Standards and Technology nor does it
imply that the material or equipment identified is necessarily the best available for this
purpose.
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each application of the tape. Three different hole diameters were investi-
gated: 6.7, 9.8, and 12.9mm, denoted as small, medium, and large,
respectively. To vary the thickness of the film, n stacked plies of PSAT
were used, up to n ¼ 3. The Young’s modulus of the Kapton tape is
roughly 3.1� 0.1 GPa. In the calculation of the film stiffness, Eh, the
stiffness of the backing dominates and the soft adhesive layer was
ignored. The bonded PSA dimensions were 25.4� 25.4mm2.

Experiments were performed on a Universal testing machine
(UTM), which measured displacement and load, at a cross-head
displacement rate of 0.1mm=s. Steel ball bearings were used as the
shaft tip and were fastened to a steel shaft with a two-part epoxy
adhesive. The shaft was attached to a 100-kg load cell via a modified
drill chuck. Three different shaft-tip diameters were investigated,
denoted as small, medium, and large: 3.2, 6.4, and 9.5mm, respect-
ively. During the experiment, the image of the propagating blister
debond was measured using a digital video camera. Note that a fine
powder (or other nonstick layer) can be placed between the film and
shaft tip to reduce adhesion at the contact area.

Uncertainty in the calculated value of G is introduced by the value
of the blister radius, which is calculated from half the average of the
blister diameter in the x and y directions of the video image. The value
of the blister radius is affected by any asymmetry of the blister shape
and the measurement from the video image. Asymmetry between the x
and y direction was generally small (0.1mm to 0.2mm) and was likely
caused by residual stress [24], anisotropy in the Kapton backing [25],
and any heterogeneities in the intrinsic interfacial adhesive tough-
ness. The uncertainty in the value of G attributable to the blister-
radius measurement depends on the magnitude of the value of G
and the equation. For the load-based equation and values of G
observed in this work ranging between 20 and 50 J=m2, the uncer-
tainty is � 1 to 2 J=m2. For the displacement-based equation and G
values between 80 and 130 J=m2, the uncertainty is � 10 to 12 J=m2.
For the combination equation and G values between 35 and 45 J=m2,
the uncertainty is � 1 to 2 J=m2. For all experiments, the standard
deviation resulting from the sample to sample variation is equal to
or more than the uncertainty introduced by the blister radius.

RESULTS AND DISCUSSION

Effects of Varied Substrate Hole Diameter Size on G
The values of G as a function of the initial substrate hole size were cal-
culated for a single ply and the medium-size ball bearing (6.4-mm
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diameter). The average values for the data sets gathered from these
measurements are shown in Figure 3a–d (for clarity, error bars are
not shown). From the slopes of these plots (a–d), the value of G can
be calculated from the load-based, hybrid, displacement-based, and
combination equations, respectively. The average values of G and sin-
gle standard deviation are listed in Table 1. The average and standard
deviation are calculated from the values of G obtained from eight
samples.

Table 1 shows that the calculated value of G depends on which equa-
tion was utilized. This observation is consistent with most shaft-
loaded blister test experiments and results, probably because of the
always-present plastic yielding at the contact area [2, 6, 9, 10]. As dis-
cussed in the experimental section, previous work has shown that, for
a Kapton PSAT bonded to aluminum, the load-based equation is not
only independent of plastic deformation at the contact zone but also
agrees well with the value of G obtained from the pull-off test [2]. Note
that the assumption of linear elasticity at the debond front is valid
because the effective membrane stress Neff [Equation (5)] is well below
the yield stress of the backing. This suggests that the load-based

FIGURE 3 Adhesion results for varied initial hole size: (a) load as a function
of blister radius, (b) load as a function of displacement, (c) displacement as a
function of blister radius, and (d) load displacement as a function of blister
radius squared. Symbols are (�) small diameter, (~) medium diameter, and
(�) large diameter.
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equation [Equation (1)] is the most ‘‘correct’’ and preferred of Equa-
tions (1) to (4). Table 1 shows that the value of G calculated from the
hybrid equation is smaller, and the values calculated from the dis-
placement-based and combination equation are larger, than the ‘‘cor-
rect’’ value of G determined from the load-based equation. Under
ideal linear elastic conditions, the value of G should be the same for
every equation, but the dependence of the calculated G on displace-
ment determines the sensitivity to the ‘‘overestimated’’ displacement
(relative to the elastic case). For instance, in the displacement-based
equation, because the value of displacement is in the numerator and
is raised to the fourth power ðG � w4Þ, the G is much greater
than the load-based equation where displacement is not used in the
calculation.

Although Figure 3 reveals substrate hole size has no significant
influence on the measured parameters (P, w, a) over the size range
studied, Table 1 shows that the hole size can influence the calculated
value of G when the displacement is incorporated into the equation. As
the hole size increases, the calculated G decreases and increases for
the hybrid and displacement-based equations, respectively. This sug-
gests that as the substrate hole size increases, the displacement or
blister height increases, presumably because of an increase in plastic
deformation at the contact zone. The calculated value of G was not
affected by hole size when using the load-based equation, which is
expected given the independence on yielding at the contact zone. Cal-
culations based on the combination equation were also independent
of hole size.

Effects of Varied Shaft-Tip Diameter Size and Film
Thickness on G
Figures 4, 5, and 6 show, for n ¼ 1, the effects of shaft-tip diameter on
the measured load, displacement, and blister radius. Graphs of the
data sets for n ¼ 1 and 3 are not shown, because the same trends were

TABLE 1 Applied Strain Energy Release Rate, G, (J=m2) Determined from
the Equations as a Function of the Blister Hole Size

Size Load Hybrid Displacement Combination

Small 32.3� 2.2 22.4� 1.4 85.0� 6.6 40.2� 2.0
Medium 30.8� 0.7 18.5� 3.0 94.4� 31.3 39.6� 3.5
Large 29.8� 4.3 15.6� 1.6 127.0� 30.8 42.6� 2.3

Note: The mean� one standard deviation about the mean is shown.
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observed as for n ¼ 1. Figure 4 shows the load as a function of blister
radius for n ¼ 1 for a variety of shaft-tip diameters. All curves appear
to overlap. The graph shows that the relationship between the load
and debond radius is unaffected by the shaft-tip diameter, which sup-
ports the principle that the load-based equation is independent of

FIGURE 5 The displacement as a function of blister radius for n ¼ 1 and var-
ied shaft-tip diameter. Symbols are (�) small diameter, (~) medium diameter,
and (�) large diameter.

FIGURE 4 The load as a function of blister radius for n ¼ 1 and varied shaft-
tip diameter. Symbols are (�) small diameter, (~) medium diameter, and (�)
large diameter.
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plastic deformation at the contact area. Figure 5 shows the displace-
ment as a function of blister radius for n ¼ 1 and varied shaft-tip dia-
meters. The graph shows that as the shaft-tip diameter decreases,
displacement increases, presumably because of an increase in plastic
deformation at the contact zone. Figure 6 shows the load as a function
of displacement for n ¼ 1 and varied shaft-tip diameter. This graph
shows the expected trend: that increasing the shaft-tip diameter
increases the applied loads for a given displacement [10, 14].

The effects of varying the film thickness are shown in Figures 7
and 8. Figure 7 shows the load as a function of blister radius for differ-
ent values of n and for all shaft-tip diameters. Figure 8 shows the dis-
placement as a function of blister radius for different values of n and
the smallest shaft-tip diameter. Figures 7 and 8 illustrate that
increasing the film stiffness (n) increases the applied load, but reduces
the displacement and overall reduces plastic yielding. In this case, the
increase in load and reduced displacement is due to the increase in
available stored elastic energy. In addition, Figure 7 again shows that
the load-displacement curves are independent of the plastic defor-
mation at the contact area.

Figures 4–8 show that the relationships among P, w, and a change
as a function of the shaft-tip diameter and film thickness, but the
question remains whether G is also affected. Tables 2, 3, and 4 list
the calculated values of G as a function of film thickness and shaft-
tip diameter for n ¼ 1, 2, and 3, respectively. The average and

FIGURE 6 The load as a function of displacement for n ¼ 1 and varied shaft-
tip diameter. Symbols are (�) small diameter, (~) medium diameter, and (�)
large diameter.
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standard deviation were calculated from seven samples each. The
expected trend was observed in Table 2 for n ¼ 1, where decreasing
the shaft-tip diameter increased the yielding at the contact area and
affected calculations of G that incorporated the displacement in the
equation. As seen in the study of the effect of the substrate hole size

FIGURE 8 The displacement as a function of blister radius for different
values of n. Data sets from the smallest shaft-tip size are shown. Lines are
drawn by hand to aid the eye.

FIGURE 7 The load as a function of blister radius for different values of n.
Data sets from all three shaft-tip sizes are shown. Lines are drawn by hand
to aid the eye.
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(Table 1), the consistent trend was that values of G calculated from the
hybrid, displacement, and combination were lower, much greater, and
greater, respectively, relative to the ‘‘correct’’ load-based equation. The
only exception was for the n ¼ 1 medium-size shaft tip, where the
values of G between the load-based equation and combination equation
were equal.

The effects of the shaft-tip diameter and yielding are most apparent
for the thinnest film ðn ¼ 1Þ (Table 2) and between the smallest and
largest shaft-tip size. As the shaft-tip diameter increased, the values
of G calculated from the load-based equation remain constant, whereas
they decreased for the hybrid equation, increased for the displace-
ment-based equation, and exhibited no trend for the combination

TABLE 2 Applied Strain Energy Release Rate, G, (J=m2) Determined from
the Equations as a Function of the Shaft-Tip Diameter for n ¼ 1

n ¼ 1 Load Hybrid Displacement Combination

Small 34.1� 2.2 17.7� 2.0 123.4� 14.8 46.8� 7.4
Medium 34.1� 4.6 21.3� 2.5 83.5� 22.9 34.3� 3.8
Large 32.9� 3.7 25.0� 3.9 57.6� 3.9 40.4� 3.2

Note: The mean� one standard deviation about the mean is shown.

TABLE 3 Applied Strain Energy Release Rate, G, (J=m2) Determined from
the Equations as a Function of the Shaft-Tip Diameter for n ¼ 2

n ¼ 2 Load Hybrid Displacement Combination

Small 28.3� 2.0 16.9� 5.1 92.2� 59.6 48.2� 11.2
Medium 25.2� 3.9 16.7� 4.3 56.4� 10.8 38.3� 5.0
Large 25.5� 5.1 17.3� 3.4 59.8� 11.4 36.8� 3.1

Note: The mean� one standard deviation about the mean is shown.

TABLE 4 Applied Strain Energy Release Rate, G, (J=m2) Determined from
the Equations as a Function of the Shaft-Tip diameter for n ¼ 3

n ¼ 3 Load Hybrid Displacement Combination

Small 24.3� 5.9 11.7� 2.7 94.7� 43.7 42.2� 19.2
Medium 22.8� 5.0 13.8� 4.7 56.5� 8.8 35.2� 9.8
Large 22.0� 3.7 13.1� 3.8 56.7� 12.3 35.7� 3.1

Note: The mean� one standard deviation about the mean is shown.
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equation. The size of the shaft-tip diameter does not affect the values
of G calculated from the load-based equation. This supports the idea
that the load-based equation is independent of plastic deformation at
the contact area and is the most preferred expression to calculate G.

For n ¼ 1 and 3, and similar to n ¼ 1, the value of G calculated from
the load-based equation is not affected by the shaft-tip diameter. How-
ever, increasing the film thickness reduces the value of G calculated
from the load-based equation, presumably because of an increase in
the bending moment and a reduction of plastic deformation of the
adhesive film. The peel test behaves similarly where stiffening of the
peel arm [26] (or an increase in tensile residual stress [27]) can cause
a reduction in peel force. The values of G calculated from the hybrid
equation also decrease as the film thickness increases, presumably
because of an increase in bending moment. In fact, the reduction in
displacement resulting from an increase in n, which would result in
an increase of the value calculated from the hybrid equation, is not
enough to overwhelm the effects of increased bending moment.

For the hybrid and displacement equations, the influence of the
shaft-tip diameter for n ¼ 2 and 3 is not as significant as for n ¼ 1.
For the smallest shaft-tip diameter and n ¼ 2 and 3, the average
and standard deviation of G calculated from the displacement and com-
bination equation is significantly greater than in any other condition.
This is due to the smallest diameter imparting the most plastic defor-
mation and the dependence of the displacement equation on the value
of w to the fourth power. The increase in plastic deformation is
observed graphically (Figure 5), where reducing the diameter of the
shaft tip leads to larger values of displacement. Also, the smallest
shaft-tip diameter leaves the deepest dimple in the center of the blis-
ter, indicating plastic deformation. Note that the size of the dimple is
reduced as the film thickness increases. Furthermore, the difference
in both the values of G and the graphs is much greater between the
small diameter and either the medium or large diameter than the dif-
ference between the medium and large diameter. The influence of the
small diameter shaft tip on the value of G calculated from the combi-
nation equation suggests that the load-based equation is more prefer-
able than the combination equation.

Varying the shaft-tip diameter and film thickness caused different
amounts of plastic deformation, which was evident from the differ-
ences in w seen graphically (Figures 5 and 8). However, differences
among the values of G resulting from yielding are small, with the
exceptions of n ¼ 1 (all sizes) and the smallest shaft-tip size for
n ¼ 2 and 3. Therefore, we have observed that plastic deformation
can influence the calculated value of G in cases where the film is thin
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or the bearing is small. The yield stress, plastic deformation, film
thickness, or the size of the shaft tip can be increased to reduce the
undesirable effects. However, we see that for n ¼ 1 and a large bear-
ing, the effects of plastic deformation are not reduced sufficiently to
result in agreement among all four expressions of G.

Calculation of the Film Tensile Rigidity (Eh)

The film stiffness or film tensile rigidity (Eh) was calculated using an
experimental compliance calibration and Equation (5). These results
were compared with the film tensile rigidity calculated from the
Young’s modulus, determined from a stress-strain experiment in a
UTM. Ideally, if linear elasticity holds and Equations (1) to (5) are cor-
rect, then the values of Eh determined from the UTM and the com-
pliance calibration should agree. The results for the varied substrate
hole size are listed in Table 5. Table 6 lists the calculated values for
the varied film thickness and shaft-tip diameter. The values calculated
from the stress-strain experiment are 77,500 N=m, 154,900 N=m, and
309,800 N=m for n ¼ 1, 2, and 3, respectively.

Examination of Table 5 shows that the calculated film tensile rigid-
ity did not depend on the size of the substrate hole diameter. This was
not unexpected given the similarity of the curves shown in Figure 3.
However, the calculated film tensile rigidity depended strongly on
the size of the shaft-tip diameter (Table 6). The results also show that
the values of Eh determined from the UTM and the compliance cali-
bration agreed best for experiments that utilized the largest shaft
tip. This is presumably because of the reduction in both plastic defor-
mation and the value of the displacement. In addition, disagreement
between the two methods may also be due to the multilayer structure
of stacked layers of glassy backing and soft adhesive as well as any
anisotropy in the PSAT backing. See Li, Wang, and Thouless for a
rigorous treatment of the debonding of layered structures [28].

TABLE 5 Film Tensile Rigidity, Eh, (N=m) Calculated from an Experimental
Compliance Calibration and Equation 5

Small Medium Large

n ¼ 1 54,000� 5000 48,000� 4000 41,000� 3000

Note: This data set is for n ¼ 1 and varied substrate hole diameters (small, medium,
and large). The value calculated from the stress-strain experiment for a single ply is
77,500 N=m. The mean� one standard deviation about the mean is shown.
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Begley and Mackin noted that using a point-load solution to mea-
sure the mechanical properties of thin films in a shaft-loaded blister-
test geometry resulted in errors and derived anaytical expressions to
account for the spherical loading [14]. Wan and Liao also derived
expressions to determine the mechanical properties of thin films using
the shaft-loaded blister-test geometry and predicted that increasing
the size of the shaft-tip diameter will change the constitutive Equation
(5) by a factor of X1 [10]:

Pa2 ¼ pEh
4

� �
X1w

3; ð8Þ

where X1 is a parameter that depends on shaft-tip radius, R, contact
radius, c, and angle, h (Figure 1). Therefore, it is expected that plas-
ticity at the shaft tip should result in decreasing the calculated film
tensile rigidity. This was observed in this work; however, the decrease
in the value of Eh was most likely due to plastic deformation and was
not solely due to the spherical contact area.

Previous research showed improved agreement among the values of
G calculated from Equations (1), (2), and (3) when the value of
Eh determined from the compliance calibration was utilized in the calcu-
lation [2]. This was likely due to the plastic deformation at the contact
area and not because the value of Eh determined from the compliance
calibration more closely reflects the mechanical behavior of the film
under loading conditions encountered in shaft-loaded blister-test
geometry. The dependence of the value of Eh on the shaft-tip diameter
and, therefore, the amount of plastic deformation, supports this
conclusion.

TABLE 6 Film Tensile Rigidity, Eh, (N=m) Calculated from an Experimental
Compliance Calibration and Equation 5

Small Medium Large

n ¼ 1 45,000� 9000 58,000� 8000 83,000� 9000
n ¼ 2 96,000� 31,000 139,000� 32,000 169,000� 47,000
n ¼ 3 155,000� 25,000 164,000� 98,000 242,000� 28,000

Note: This data set is for n ¼ 1, 2, and 3 and the varied shaft-tip diameter (small,
medium, and large). The values calculated from the stress-strain experiment and
UTM are 77,500 N=m, 154,900 N=m, and 309,800 N=m for n ¼ 1, 2, and 3, respectively.
The mean� one standard deviation about the mean is shown. Note that the values of Eh
determined from the UTM and the compliance calibration showed the best agreement for
experiments that utilized the larges shaft tip.
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Methods to Calculate the Contact Radius

There are several methods to calculate the contact radius, c, and the
penetration of the sphere into the film, d, at the shaft tip (Figure 2).
The contact radius is related to d by Equation (9) [29]:

d ¼ c2=R: ð9Þ

In the work of Wan and Liao, the contact radius can be calculated
from the following linear elastic expression [10]:

c ¼ 3R3Pð1� vÞ
pEh

� �1=4
; ð10Þ

where v is Poisson’s ratio. This expression assumes a small uniform
membrane strain.

Begley and Mackin derived an approximate closed-form solution for
the contact radius that incorporates the effects of residual stress [14]:

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2p

� �
P

EhR
þ 6pe0

� �s
� 3e0

vuut ; ð11Þ

where e0 is the prestrain in the film attributable to residual stress.
Wan and Mai developed an expression for the yielding radius, ap,

that accounted for plastic deformation at the contact area, which can
be used to estimate the contact radius ðap 	 cÞ [6]:

ap 	 a 
 exp � a 
 a4=3 � 3

4

� �1=2" #
; ð12Þ

where

a ¼
4p2r3ph

2

P2E

 !2=3

ð13Þ

and rp is the yield stress of the film determined from a stress-strain
experiment.

The actual value of the penetration depth and displacement result-
ing from plastic deformation are unknown; however, the magnitude
was estimated to be about 1mm from examination of Figures 5
and 8. None of the models discussed previously predict the correct
magnitude of the contact radius and penetration depth. This is not
unexpected given that models assume elastic deformations (except
for the model of Wan and Mai). However, the disagreement between
the experimental results and the model of Wan and Mai is likely also
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due to how the plasticity is modeled. Unlike linear elasticity, the solu-
tions that incorporate plasticity are not unique. Plastic yielding beha-
vior among polymers can be very different; it may be rate dependent,
time dependent, stress hardening, or stress softening, and small var-
iations in behavior can lead to large differences, especially at high
strains. Therefore, plasticity models are highly specific and it is not
unexpected that the models may not match the experimental data;
however, there may be many other systems that do match the model.
This suggests that rather than using these models to predict the con-
tact radius, it is best to actually measure the plastic contribution to
the blister height. The plastic deformation at the contact area can be
measured by loading and unloading the specimen. Just as in a
stress-strain experiment, the degree of plastic deformation can be
deduced from the difference between the loading–unloading curves
for successive loadings of the same specimen. For this PSAT, the
loading–unloading process is complicated because the PSAT will reat-
tach upon regaining contact with the substrate. In adhesive systems
where the adhesive will not readhere, such as glassy structural adhe-
sives, this approach is possible. However, measuring the amount of
plastic deformation may not be necessary if one is only interested in
the measuring G and utilizes the load-based equation.

Effect of Film Thickness and Shaft-Tip Diameter on the
Mechanical Behavior (Stretching Membrane vs.
Bending Plate)

In a peel-test geometry, the adhesive layer can behave either like a
bending plate, a stretching membrane, or a combination of the two.
Whether the film behaves like plate or membrane determines which
linear elastic equations should be utilized to model the mechanical
properties and delamination of the adhesive. If the load is small or if
the film is thick or stiff, then bending behavior dominates. If the load
is large or if the film is thin or compliant, then stretching behavior
dominates [14]. As a consequence, there is a predicted bending to
stretching transition when the load is first applied during contact with
the shaft, up to when the debond initiates.

There are several methods to determine mechanical behavior of
the film. A simple method is to plot the logarithmic load as a func-
tion of the logarithmic displacement ðP / wcÞ during the initial load-
ing of the film prior to debond initiation. The value of the slope, c,
indicates the mechanical behavior, where c ¼ 1 is characteristic of
a bending plate and a value of c ¼ 3 is characteristic of a stretching
membrane [10].
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In addition, Wan and Liao derived the expressions to determine the
normalized membrane stress, b ¼ ðN a2=DÞ½, which indicates the
ratio of stretching stress to bending rigidity [10]. N is the film stress
and D is the flexural rigidity. A small value of b (less than 0.1) indi-
cates a pure bending plate and a large b (greater than 20) indicates
a stretching membrane.

A similar dimensionless parameter was derived by Komaragiri,
Begley, and Simmonds to determine if bending can or cannot be
ignored (for both pressure loading and point loading) [15]:

k ¼ 12 
 ð1� v2Þ
� 	3=2 Pa2

Eh4

� �
: ð14Þ

The value of k determines if the film behaves more like a bending
plate or stretching membrane.

The values of the slope, c, of the log load as a function of log
displacement are listed in Table 7 for the varied substrate hole size.
Table 8 lists the values of c for the varied shaft-tip diameter and film
thickness. Tables 7 and 8 show that for this adhesive, the measured
value of c does not depend on the substrate hole size, shaft-tip diam-
eter, and film thickness. This is unexpected given that Wan and Liao
showed analytically and experimentally that increasing the shaft-tip
diameter results in a larger gradient, c [10]. However, this work

TABLE 7 Slope, c, of the Log Load–Log Displacement Curve ðP / wcÞ

Small Medium Large

n ¼ 1 2.3� 0.3 2.3� 0.4 2.4� 0.4

Note: This data set is for n ¼ 1, and the varied substrate hole diameter (small,
medium, and large). For a pure bending plate, c ¼ 1, and for a stretching membrane,
c ¼ 3. The mean� one standard deviation about the mean is shown.

TABLE 8 Slope, c, of the Log Load–Log Displacement Curve ðP / wcÞ

Small Medium Large

n ¼ 1 2.2� 0.3 2.7� 0.4 2.3� 0.2
n ¼ 2 2.3� 0.3 2.2� 0.3 2.3� 0.3
n ¼ 3 2.3� 0.4 2.4� 0.4 2.1� 0.2

Note: This data set is for n ¼ 1, 2, and 3 and varied shaft-tip diameter (small, medium,
and large). For a pure bending plate, c ¼ 1, and for a stretching membrane, c ¼ 3. The
mean� one standard deviation about the mean is shown.
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agrees with the research of Begley and Martin [14], which showed
analytically and experimentally that, for both a point load and spheri-
cal load of a stretching membrane, it is expected that P / w3. How-
ever, the scatter in the data suggests that a UTM, which measures
the load and displacement, may be insensitive to the effects of sub-
strate hole diameter, shaft-tip diameter, and film thickness. The
values of c listed in Tables 7 and 8 are roughly 2.3�0.3 for all test con-
ditions, which suggests that the film behaves more like a stretching
membrane than a bending plate. The stretching film behavior of this
adhesive is supported by calculations using the methods of Wan and
Liao, and Komaragiri, Begley, and Simmonds.

Effect of Applying Bending Plate Equations to Calculate G
It is of interest to compare values of G determined for a bending plate
model with the stretching membrane model we have used previously
[Equations (1) to (4)]. Note that we have shown previously that the
adhesive film behaves more like a stretching membrane
ðc ¼ 2:3� 0:3Þ. Malychev and Salganik derived the load-based, combi-
nation and displacement-based equations for a bending plate [30]:

G ¼ 3ð1� v2Þ
8p2Eh3

P2 load-based equation; ð15Þ

G ¼ Pw

2pa2
combination equation; ð16Þ

and

G ¼ 2Eh3

3ð1� v2Þ
w2

a4
displacement-based equation: ð17Þ

The combination equation [Equation (16)] is identical to that
derived by Wan [11] and Williams [22]. For a bending plate, Equations
(15) to (17) will be most applicable when the displacement in less than
the film thickness [31]. Furthermore, for a bending plate, the load is
predicted to be constant during delamination. In these experimental
results, the displacement is much greater than the film thickness
and the load is not constant. Therefore, the membrane equations are
more appropriate for the adhesive system investigated in this work.

The strain energy-release rate calculated from Equation (16) varies
by as much as five orders of magnitude from the load-based stretching
membrane equation [Equation (1)]. Note that this difference is signifi-
cantly reduced as the film thickness increases. The combination
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equation derived for a bending plate [(Equation 16)], which does not
incorporate the mechanical properties of the film, differs by a factor
of two from the membrane solution of the combination equation
[(Equation 4)]. Therefore, the bending plate equation yields a value
of G twice as large as the membrane solution. The displacement-based
equation for the bending plate is also very sensitive to the film thick-
ness. For n ¼ 1, the difference between the bending plate and stretch-
ing membrane case was less than a factor of two; however, increasing
the film thickness increased the difference by as much as four orders of
magnitude.

Effect of Shaft-Tip Diameter and Film Thickness on Scaling
of Equations (1) to (4)

If Equations (1) to (4) have been derived correctly and the test speci-
mens behaved linear elastically, then the data plotted in Figures 3
to 8 should be linear and should extrapolate back to the origin
(P ¼ 0 , w ¼ 0, and a ¼ 0). Examination of Figures 3 to 8 reveals three
trends. First, graphs of the load as a function of blister radius extrapo-
late through the origin, which suggests linear elasticity occurs and
supports the idea that the load-based equation is independent of the
plastic deformation at the contact area. The second trend is that reduc-
ing the shaft-tip diameter causes the graphs to extrapolate more clo-
sely through the origin. This supports the reasoning that the offset
between the extrapolated line and origin is due to the finite width of
the shaft tip, which was suggested by Wan and Mai [6]. Lastly, as
the film thickness was increased, the extrapolated line tended to pass
further from away from the origin.

Practical Implications for the Shaft-loaded Blister Test

This work has practical implications for the design of a SLBT experi-
ment. Wan and Liao proposed that to reduce plastic deformation at
the contact area, the radius of the shaft tip should greater than or
equal to [10]:

R � 9P

2phry
; ð18Þ

where ry is the yield stress of the adhesive film. In other words, one
should increase the shaft-tip diameter, reduce the applied load, and
increase the thickness to reduce the stress and possibility of yielding
in the adhesive film. The present work has shown that plastic
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deformation can be reduced by increasing the shaft-tip diameter,
despite the expected increase in load. This work has also shown that
the size of the shaft tip does not affect the load-based equation and
so the size of the shaft tip seems to be unimportant; however, the
chance for film rupture can be reduced if a larger shaft tip is utilized
and that enables the application of greater loads per given displace-
ments and, therefore, greater strain energy-release rates. Begley also
notes that the greater applied loads facilitated by a larger shaft-tip
diameter provide better load resolution, which has practical implica-
tions for applying atomic force microscopy to adhesion studies and
measuring the mechanical properties of thin films [14]. By reducing
the stress in the film, a thinner film can be utilized, which will more
closely follow the assumption of a thin stretching membrane used to
derive the expressions of G. Furthermore, a larger bearing that fits
snuggly into the initial blister hole enables the shaft tip and blister
to be easily centered and can help to reduce sample to sample scatter.

Plastic deformation may also be influenced by the cross-head dis-
placement rate, which affects the strain rate and, therefore, the yield
stress and yield strain in the adhesive layer. Although no experiments
have been performed to investigate the effect of displacement rate on
plastic deformation at the contact area, effects similar to those pre-
sented in this work could be expected. However, for this PSAT,
increasing the test rate results in larger values of G because of increase
in the debond velocity and viscoelastic effects in the soft pressure-
sensitive adhesive layer. Therefore, deconvolution of the effects of
plastic deformation and debond velocity on G could prove difficult.

CONCLUSIONS

The influence of the film thickness, substrate hole diameter, and shaft-
tip diameter on plastic deformation at the contact area and blister
height was measured. Increasing the hole size slightly increased the
amount of plastic deformation, which was evident from the changes
in G, but did not significantly affect the measured P,w, or a. Increasing
the film thickness (n) increased the applied load and decreased the dis-
placement. Decreasing the shaft-tip diameter increased the displace-
ment or blister height resulting from plastic deformation at the
contact area. The presence of both effects suggests that there are differ-
ences in the amount of plastic deformation among the different test
conditions. Differences in the calculated values of G were observed
when the displacement was incorporated into the calculation. Relative
to the ‘‘correct’’ load-based equation, differences among the equations
for G can be reduced using a large shaft-tip diameter. The value of
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G calculated from the load-based equation decreased slightly as the film
thickness increased. This is a trend typically observed in many other
adhesive tests. The film tensile rigidity, Eh, calculated from the experi-
mental compliance calibration agreed best with values determined
from a tensile test of the film when the largest shaft-tip diameter
was used. The contact radius and displacement resulting from plastic
deformation should be determined experimentally; however, it may
be unnecessary if the load-based equation is utilized. Methods to deter-
mine if the film behaves like a bending plate or stretching membrane
were discussed. Using these techniques, it was found that the
film mostly behaves like a thin stretching membrane. The values of G
were significantly different depending on whether the equations for a
bending plate or stretching membrane were used.
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